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Abstract— Phishing attacks are the oldest kind of cyber assault, yet continue to be the most common and a rising menace. A minuscule 

effort of social engineering on the attacker’s part can result in a credible, tailored email that is deceitful enough for victims to fall for. With the 

skyrocketing number of phishing attempts, campaigns, and websites, this is a hugely escalating threat to cybersecurity. This study lexically 

examines the dangerous, deceptive links used in phishing attacks and focuses on building a model that provides the probability of a link 

being malicious based on common phishing link observations. Detection is solely based on the estimation of the probability (returned by the 

random forest classifier) and not classification thereby removing bias in classifying URLs. 

Index Terms— Phishing, Random Forest, Decision Trees, Estimating probabilities, Phishing URLs, Machine Learning, Analysis   

——————————      —————————— 

1 INTRODUCTION                                                                     

Phishing is an insidious, fraudulent attempt, a deception that 
involves impersonating reputable companies, organizations, 
and/or persons to entice targets to give out sensitive infor-
mation to non-legitimate sources. These tactics are a prevalent 
attack vector that has been employed for many years, with 
masses being aware of the potential ramifications and risks as-
sociated. It, however, still is a prevalent attack out there, infect-
ing a large number of people worldwide. The brand trust is 
also, sometimes, leveraged to disseminate the phishing cam-
paign by incorporating steps that force the target to share the 
content via the target’s social network, thereby enhancing the 
effect and dissemination of the campaign. The repercussions of 
falling for this attack might be severe, ranging from identity 
theft to personal data breach to fund stealing to social conse-
quences implicating individual targets and gaining privileged 
access to encrypted data or trade secrets, and corporate espio-
nage at the corporate level, resulting in large financial losses, a 
drop in market share, and loss of customer/consumer faith. The 
emphasis of this research paper is on lexically analysing URLs. 
The URLs are split down into parts in order to examine them 
more deeply and find similarities based on specific categories. 
A Uniform Resource Locator(URL) comprises several compo-
nents namely, orderly, protocol, subdomain(s), SLD, TLD, path, 
quer(y/ies) and fragment(s). Following typical structure is 
ubiquitous in any URL- (note all these components are used as 
features in the detection process) 

 
protocol://subdomain(s).second-level-domain.top-level-

domain/path?quer(y/ies) 
\#fragment(s) 
(The subdomain(s), quer(y/ies) and fragment(s) parameters 

are optional.) 
 
The above components are used as features in the model. 

2   PROTOCOL 

The first root protocol is (being) used to determine the proba-
bility of a URL performing phishing. The URLs are not being 
labeled as ‘phishing’ or ‘non-phishing’ since doing so could 

lead to prejudice. Outliers exist in every real-world circum-
stance, which could create a bias in the judgment. A URL might 
have a 90% probability of being a phishing URL—as predicted 
by the model—but it also has a 10% chance of not being a phish-
ing URL. A carefully tailored URL could also be deceitful to the 
model. Hence, it is rather practical to offer the URL a 'chance' of 
being a phishing URL than to designate it as phishing or non-
phishing. This eliminates the classification bias.  
 
The 1st protocol decided for this research was simple but cum-
bersome. The protocol is based on decision trees (was used be-
cause of its advantages of considering both continuous and cat-
egorical variables, and forces the consideration of all possible 
outcomes of a decision and traces each path to a conclusion [1]) 
but does not rely completely on the same. The main idea of de-
cision trees is creating a tree on which decisions are taken based 
on the input features. Now, the issue is one decision tree would 
return a binary output: 0, or 1. We need probability, as pro-
posed in the first protocol, and for this, we need to create dif-
ferent decision trees with different samples, since decision trees 
are based on information gain and entropy, which is based on 
the input sample. Imagine a bunch of trees created with differ-
ent samples and features. Once input is given, each tree will 
give a different output (mixture of true’s and false’s as the prob-
lem is a binary classification). For example, let’s imagine 500 
trees made from different samples and features. If we input 
“www.ulb.ac.be/scmero/”, we get the label false i.e non-phish-
ing from 400 trees. The rest 100 trees return that the URL is 
phishing. Getting the proportion, 100 / 500, we get the proba-
bility as 0.2 or 20%. This was based on 500 trees, and we got the 
proportion of trees that said ’True’. Note, this example consid-
ers the proportion of trees, whereas we will be finding the esti-
mated probability given by the trees.  The above example is just 
for explanation. 
  
The random forest classifier was well in sync with the above dis-
cussed protocol thought for this research. It is a classification and 
regression issue that is an extension of bootstrap aggregation (bag-
ging) of decision trees [2]. Hence, the Random Forest Classifier is 
used in this research.  
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The model is structured in two ways. Firstly, the model is created 
and tuned with good accuracy. After the creation of the basic 
model, further analysis, tuning, changes are made to the model 
concerning the estimation of probabilies to achieve the final proto-
col of the paper. 

3 FEATURES 

There are many ubiquitously found aspects and parameters in 
URLs that could be indicative of phish suspicion. Eg. Length of 
the hostname, number of special characters, etc. However, it 
was important to determine the effective continuous and cate-
gorical-based ones that could be used in the model. Some cho-
sen features had to be rejected due to difficulties in data collec-
tion. Even though many other features could be included, it 
could also lead to a flawed model. Looking at the URLs, an eas-
ily noticeable feature is the length of the hostname. Consider a 
URL like this: “www.ulb.ac.be/scmero/”. The URL’s host 
name’s character count is small (“www.ulb.ac.be”) compared 
to the character count of the hostname (“www.pay-
pal.com.3.kaseg-spe.org”) of a URL like “www.pay-
pal.com.3.kaseg-spe.org/webscr/1/webscr.php?cmd= login-
run” which is common in malicious links. Hence, continuous 
variables like the length of the hostname, the number of digits 
in the hostname, the number of special characters in the host-
name, etc were included as features. Similarly, comparing the 
first URL's subdomain -[www]- to the second URL's -[www, 
paypal, com. 3]-, the second one appears to be more suspicious. 
Therefore, characteristics such as the number of subdomains, 
length of the subdomains, the length of the domain name, etc. 
could also be suggestive. Furthermore, we see that some URLs 
contain query parameters. Doing a quantitative analysis of the 
dataset, it was noticed that phishing URLs have numerous que-
ries. Therefore, features like the number of parameters, the 
length of each query parameter, the number of special charac-
ters in the parameters, etc were also included. Similarly, it was 
noticed that phishing URLs consisted of multiple directories, 
which again is a crucial aspect of URLs; hence, features like the 
number of directories, special characters in those directories, 
etc, were also included. Subsequently, features like the number 
of fragments, the length of the fragments, etc were considered 
as well. A full list of these URL-based features is provided at 
the end of this section. All of these URL-based features are con-
tinuous and a component of the URL. 
 
Considering the same URL- www.paypal.com.3.kaseg-spe.org, 
we can see that the ‘paypal’ brand is being impersonated. 
Phishers most pervasively disguise themselves as brands to 
persuade the victim to fall for the clickbait. Detecting these 
brand imbibed URLs can help the model judge phishing. 
Hence, detecting brand-based features like the presence of a 

brand name, the number of brands present in the URL, etc 
could be helpful. For this, a dataset of common brands was 
made. Along the way of this brand detection, a commonly used 
technique called typosquatting or URL hijacking was noticed. 
‘google.com’ and ‘goggle.com’ have a minuscule difference; ‘o’ 
is replaced by ‘g’. A user is very commonly in a state of placidity 
which persuades them to believe that they are in the right place. 
It was hence significant to detect if the URL is using the ty-
posquatting technique which helps us judge phishing. For de-
tecting this, we need to know which brand is the URL most sim-
ilar to. This typosquatting detection was done in compliance 
with the same brands’ dataset mentioned before. Now, to detect 
whether a URL is typosquatting, we need to measure the simi-
larity index between the brand and the given URL. For this pur-
pose, a similarity index metric called the Levenshtein distance 
was used. The Levenshtein distance is a string metric that is used to 
compare two sequences. The Levenshtein distance between two words 
is the number of single-character edits (i.e. insertions, deletions, or 
substitutions) needed to change one word into the other [3]. 
 
Using this metric, the similarity index of the two domain names 
is found. Mathematical analysis was done to determine a 
threshold (x), wherein if the similarity index is greater than x, 
we term it as typosquatting. The similarity index was calculated 
for the entire dataset. This calculation was done for both phish-
ing and non-phishing URLs so that it can mathematically be 
checked whether it can be included in the final model as this 
would affect the final class probabilities. Once the similarity in-
dex was calculated, the data was split for phishing and non-
phishing URLs and then was analyzed. The only problem con-
sidering the similarity index as a feature is that the index for 
both phishing and non-phishing classes do not differ much. In 
fact, the actual indices of the similarity index of both phishing 
and non-phishing overlap. This overlap can create a confusion 
for the model utliamately leading to poor results. This is clearly 
visual in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
An overlap is seen to be existent in the two distributions using 
some visual analysis, but a proper test would explain whether 
the distributions are actually similar or not. Before completing 
the test, we need to first go back and realize why we are finding 
the similarity index. This similarity index could prove to be a 
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Fig. 1. Histogram showing overlapping distributions of phishing 
and non-phishing URLs 
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very important feature that could instantly provide a good way 
for the model to describe whether the URL is phishing or not. 
Therefore, we need to model this similarity index for phishing 
and non-phishing URLs. We need to check whether the indices 
are similar or not because if they are similar, it would only con-
fuse the model. For checking this similarity between distribu-
tions, we completed the two-sample Kolmogorov-Smirnov test. 
The Kolmogorov-Smirnov test tests whether two samples come from 
the same distribution. It can be used to compare two empirical data 
distributions, or to compare one empirical data distribution to any ref-
erence distribution [4] The test gives us a statistic called D-statis-
tic which would help us get the distance between the two sam-
ples. Let’s imagine the sample 𝑠_1 belonging to the distribution 
having c.d.f 𝐹(𝑥). Sample 𝑠_1 represents the phishing URLs. 
Similarly, sample 𝑠_2 belongs to the distribution having c.d.f 
𝐺(𝑥) and represents the non-phishing URLs. The null hypothe-
sis is that both c.d.fs are equal. The alternate hypothesis is that 
both c.d.fs are not equal. If the p-value is less than 0.05, we can 
successfully reject the null hypothesis and consider both sam-
ples coming from different distributions. Else both come from 
the same distribution. If the alternate hypothesis comes true, it 
means that both the phishing URLs and non-phishing URLs’ 
similarity indices come from different distributions which 
would make it almost impossible for us to include as a core fea-
ture. If both the samples were from the same distribution, it 
would have been easier for us to calculate the probability for 
that similarity index using the appropriate probability distribu-
tion. If both are from different distributions, it is almost impos-
sible for us to differentiate between the two distributions as 
both have very similar similarity indices. The null hypothesis is 
𝐻0: 𝐹 = 𝐺 and the alternate hypothesis is 𝐻𝑎: 𝐹 ≠ 𝐺 [5]. The D-
statistic was 0.213. The p-value was 0.00. Since 0.00 < 0.05 we 
successfully reject that both samples are from the same distri-
bution. The empirical cumulative density function is also plot-
ted. (Figure 2) 

 
 
 
 
 
 
 
 
 

 
 
The distance between the orange and the blue line is what the 
D-statistic is. Looking at the graph, we can visualize that the 
samples have different distributions. We can conclude now that 
we cannot include the similarity index as a core feature as it 
would in fact confuse the model. Due to significant similarity 
between the indices of phishing URLs and non- phishing URLs, 
we cannot differentiate between these continuous numbers for 
a new URL given to predict. Hence, the similarity index was not 
considered. Although the similarity index was not considered, 
it was necessary to include whether the URL is using the ty-
posquatting technique or not. The typosquatting detection was 
built on this similarity index of URLs in compliance with 

brands, but the biggest difference between typosquatting and 
the similarity index was that typosquatting had higher num-
bers (85 - 95 index), while the actual similarity index model 
ranged from 0 - 100. Therefore, it was easier to model and detect 
whether the URL is typosquatting or not. The typosquatting 
histogram is shown in Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Notice that the distribution is left-skewed, therefore the Gauss-
ian distribution cannot be considered. Moving forward, we 
need to determine a threshold value using which we can actu-
ally term a URL as typosquatting. 
 
Let’s say a URL’s similarity index was found to be 𝑥. What 
threshold value 𝑘 needs to be used to determine whether the 
URL with similarity index 𝑥 can be termed as a typosquatting 
URL, if 𝑥 > 𝑘. 
 
To determine this optimum threshold, the mathematical tech-
nique or statistic used was the confidence interval of the popu-
lation mean. This was chosen as the optimum threshold be-
cause if we would have chosen the confidence interval of the 
sample mean, there would have been biasing, affecting the 
model. Consequently, the estimation of the population mean 
was considered the best optimum threshold. Looking at the his-
togram of typosquatting similarity index, we see that most of 
the values lie in the 85 - 95 bin range. This means that the mean 
will also lie around 90, and our threshold will also lie around 
85 - 95. To estimate the population mean, these requirements 
are to be fulfilled: 

 
1. The sample is a simple random sample. 
2. The sample size > 30 or the population is normally dis-

tributed. 
 

In our case, both conditions are met. Therefore, we can use the 
following formula to estimate the population mean [6] 
 
                     𝐶𝐼 = �̅� ± 𝐸   (1) 

                     𝐸 = 𝑡𝛼∕2 (
𝑆

√𝑛
)   (2) 

  �̅� − 𝑡𝛼 2⁄ (
5

√𝑛
) < 𝜇 < �̅� +  𝑡𝛼∕2 (

5

√𝑛
)                (3) 

 

Fig. 2. ECDF plots for phishing, non phishing and both 

 

 

Fig. 3. Distribution of Typosquatting data 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 13, Issue 5, May-2022                                                                                                324 

ISSN 2229-5518  

 

IJSER © 2022 

http://www.ijser.org 

Using this, the confidence interval of the estimated population 
mean was found to be 90.17 < 90.20 < 90.23. 
 
Rounding off, we can conclude that the threshold value for 
terming the URL as typosquatting is 90. Although this is not a 
perfect value, it acts as a good estimation in the current situa-
tion.  
 
Examining a URL, alongside URL-based features, we see that 
there are some web-based features as well. For example, the 
number of visits to a specific URL, the page's ranking, a WHOIS 
query, and so on. Unfortunately, due to the cumbersome data 
gathering, these external aspects are not included in this paper. 
Some URLs have page readers, whereas others do not. As a re-
sult, there would be a lot of missing data, prompting us to apply 
imputation techniques to eliminate the rows with missing val-
ues. This would have had a significant impact on the model's 
performance and, as a result, these features were rejected and 
excluded from the paper. The final chosen features are to be 
seen in table 1. Table 2 provides the purpose of each feature in 

the respective order of features given in Table 1. 

4 CREATION OF THE MODEL 

In this section, a very basic model is created that could return 
required basic probabilities and/or binary outputs based on the 
provided input URL. This section completed the tuning of pa-
rameters to create a model that returns fine output. 
 
Before tuning the parameters, it is important to consider the fea-
ture engineering aspect of the ML pipeline. For the current prob-
lem statement, much feature engineering was not needed as the 
data needs to be inputed into the model in its original form without 
any scaling, transformations, normizaltions, etc because the in-
putted feature numbers would be itself indiciative of the difference 
between phishing and non-phishing urls. Although these tech-
niques were excluded, the check for imbalanced dataset was done. 
 
The count of ‘0’ or ‘non-phishing’ in the dataset is 48008, and the 
count of ‘1’ or ‘phishing’ in the dataset is 47897. As there is not 
much difference between the count of the two, there is no need to 
fix the imbalanced dataset. Moving on, parameters like number of 
estimators, max depth, min samples split, min samples leaf, max 
features, bootstrapping are to be tuned so as to make the random 
forest model more reliable and accurate. The following process us-
ing cross-validation was followed to tune the parameters: 

 
1. List value/values of each parameter (they are random, 

from the basic values to large values corresponding to the 
actual parameter range.). 

2. Tune the model using RandomizedGridCV to get the val-
ues of the tuned parameters. These values are returned 
on the basis of a random check, wherein a random value 
from the list of values for each parameter is choosen. The 
model is created from this randomly chosen value of 
each parameter, following the calculation of the model’s 
accuracy. This accuracy is compared to the previously 
created model by RandomizedGridCV, and stores the val-
ues of the parameter with the best accuracy. On each itera-
tion, the RandomizedGridCV will choose a different com-
bination of the features. Altogether, there are 17 ∗ 14 ∗ 16 ∗
15 ∗  3 ∗ 2 = 342720 settings. Note, the number of K-folds 
used were 10. 

3. The final values returned from RandomizedGridCV is fur-
ther split into values/ranges which is then fit into 
GridSearchCV.  GridSearchCV unlike Randomized-
GridCV would choose all provided values for each param-
eter and compare the accuracy to return the model with the 
best values of the tuned parameters. 

 
The above process was followed because through Randomized-
GridCV, the range for each parameter was narrowed down. Now 
that it’s known about where to concentrate our search, every com-
bination of settings to be tried can be explicity specified. 
 
The following tables list the parameters and its values created orig-
inally, the values retrieved from RandomizedGridCV, splitting the 
values retrieved from RandomizedGridCV, final values of each 
parameter returned by GridSearchCV. 

TABLE 1 
SELECTED FEATURES WITH THEIR TYPES 

 

TABLE 2 
PURPOSE OF EACH FEATURE 
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5 ANALYSIS AND EVALUATION 

The accuracy of the model is 0.913. The out-of-bag error of the 
model is 0.09.  Let us look at the confusion matrix (Figure 4).  

 
Referring to the confusion matrix, we can point out that the model 
predicts 90% of the URLs as phishing correctly. Similarly, it pre-
dicts 93% of the URLs as non-phishing correctly. Let us calculate 
the sensitivity and specificity. Sensitivity is just the recall that was 
calculated before. 
 
The specificity is 0.923, and sensitivity is 0.903. Evaluating a model 
based on both sensitivity and specificity is appropriate for most 
datasets because these measures consider all entries in the confu-
sion matrix [7].  
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
In this situation, since specificity is 92.3%, it implies that if a URL 
is classified as non-phishing, there is a 92.3% chance that the model 
will also classify the URL as non-phishing. Whereas, our sensitiv-
ity is 90.3%, which implies that given a URL as phishing, there is a 
90.3% chance that the model classifies it as a phishing URL. Hence, 
our classifier does a great job at picking out the negatives, as well 
as the positives. While sensitivity deals with true positives and 
false negatives, specificity deals with false positives and true neg-
atives. This means that the combination of sensitivity and specific-
ity is a holistic measure when both true positives and true nega-
tives should be considered. Sensitivity and specificity can be sum-
marized by a single quantity, the balanced accuracy, which is de-
fined as the mean of both measures [7]. 
 
The balanced accuracy is 0.913. This shows that the model is pretty 
good at predicting both true positives, and true negatives. Now let 
us analyze the ROC curve of the model. The ROC curve is shown 
in Figure 5.  

 
In ROC curves, the true positive rate (TPR, y-axis) is plotted 
against the false positive rate (FPR, x-axis). Each point in a ROC 
curve arises from the values in the confusion matrix associated 
with the application of a specific cutoff on the predictions (scores) 
of the classifier [8]. The ROC curve is beneficial as it takes into con-
sideration the entire confusion matrix. The closer the ROC to the 
top left corner, the better the classifier. To evaluate the ROC curve, 
the single metric AUC (area under the curve) can be calculated. 
The AUC of a classifier is equivalent to the probability that the clas-
sifier will rank a randomly chosen positive instance higher than a 
randomly chosen negative instance [9]. The AUC is 0.97 for both 
classes. This shows that our classifier’s performance is very good.  
 
We will not be describing the model’s performance now, as the dif-
ferent evaluation metrics like ROC, AUC, etc, gave us a good idea 
about the model’s performance. According to the original protocol, 
we need to output the probability and not the classification. Hence, 
metrics like ROC won’t prove much helpful as they should be used 
when you ultimately care about ranking predictions and not nec-
essarily about outputting well-calibrated probabilities [10]. But 
these evaluation metrics gave us an overall idea of the model’s per-
formance for classifying the URL as phishing or not. Therefore, in 

TABLE 3 
PARAMETERS TO BE TUNED WITH THEIR VALUES 

 

TABLE 4 
TUNED PARAMETERS RETURNED BY RANDOMIZEDGRIDCV 

 

TABLE 5 
PARAMETERS TO BE TUNED WITH NEW VALUES 

 

TABLE 6 
FINAL VALUES OF PARAMETERS 

 

 

Fig. 4. Normalized Confusion Matrix 
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a situation wherein classification is the root protocol, this model 
can essentially be used after some minute further modifications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

6 ESTIMATING PROBABILITIES 

 
As stated earlier our main protocol included the model giv-

ing us the probability of the URL trying to phish, rather than 
the actual classification. Even though the classification is based 
on the predicted probability, it is biased as discussed before. 
There are multiple ways using which we can predict the prob-
ability i.e Average voting, Relative Class Frequency, Laplace esti-
mate, The m-estimate [11]. One important concept to understand 
is that these methods are better for trees known as probability 
estimation trees. Probability estimation trees are nothing but the 
standard decision tree algorithm, and running a bunch of data 
through it and counting what portion of the time the predicted label 
was correct in each leaf [12]. Fortunately, the way we imple-
mented random forest in scikit-learn had us create ensemble 
trees that have a function called predict_proba which follows 
the concept of probability estimation trees. Now, we need to 
understand the methods in our context and finalize the way of 
estimating the probabilities. 

 
The first method, average voting, defines a class probability distri-

bution by averaging the unweighted class votes by the members of the 
ensemble, where each member votes for a single (most probable) class 
[11]. More detailed information on this method is provided 
here: [11]. The second way, Relative Class Frequency, which is a class 
probability distribution by averaging the relative class frequencies of 
the members of the ensemble [11]. The other two ways are very 
similar to relative class frequency. Based on the conclusion of 
[11], we will be focusing on the two methods: average voting, 
and relative class frequency. The reason is that the last two es-
timates are based on the relative class frequency, and relative 
class frequency outperforms those two estimates. Therefore, we 
will be analyzing, and evaluating the first two methods.  

 
For average voting, we need to determine an optimum 

threshold that could classify the results and then can be used to 
estimate the probability. This optimum threshold determina-
tion is calculated in Section 7. The optimum threshold is 
0.506451. Based on this optimum threshold, we can classify the 

results in ‘0’ and ‘1’. Note: relative class frequency is the same 
implementation which is done in scikit-learn’s predict_proba 
for random forest classifier. predict_proba for random forest 
takes the mean of the class predicted probabilities given by each 
decision tree in the forest. The class predicted probabilities 
given by each decision tree are the fraction of samples of the 
same class in a leaf [13]. We will try to evaluate these two ways 
and decide which one would be the best in our case. We will do 
a statistical significance test, as well as an analysis of other met-
rics. 

 
We'll undertake a visual examination first, including a basic 

study of some assessment metrics linked to the estimation of 
probability, before going on to a more statistical decision. After 
we've completed the visual analysis, we'll look at the statistical 
significance of the observed difference in error caused by aver-
age voting and relative class frequency. We'll look at the area 
under the curve, the brier score, and the reliability curve for 
now. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

In figure 6, the first graph shows the ROC curve for relative fre-
quency, while the second shows average voting. The area under 
the roc curve for relative frequency (0.97) is the same as the av-
erage voting area under the curve. Even when the trade-off be-
tween the false positive rate and the true positive rate of both 
methods is considered, it can be concluded that both strategies 
perform wonderfully. When the false positive rate is 0.0, the 
true positive rate is roughly 0.5 for both approaches. When the 
false positive rate rises, the true positive rate rises as well, 
reaching around 0.9, the largest rate of change in the entire 
function. This suggests that the true positive rate would be 0.9 
at a false positive rate of 0.1. This would be balanced since, in 
order to reduce the false positive rate, the true positive rate 
must also be increased sufficiently. As a result, the final tradeoff 
would be 0.1 false positive rate and 0.9 true positive rate. Both 
methods perform admirably, according to this analysis. As a re-
sult, various methods of evaluation are required to establish 
which method is superior. Moving on to the Brier score, it is the 
mean squared error between predicted probabilities and the ex-
pected values. The score summarizes the magnitude of the error 
in the probability forecasts [14]. For average voting, the brier 
score loss is 0.067, and for relative class frequency, it is 0.066. 
It's clear that the error isn't significant, and both error values are 
fairly close to one another. In general, the brier score makes an 
essential point concerning probability. Between the anticipated 

 

Fig. 5. ROC curve for the final model 

 

Fig. 6. ROC curve for relative class frequency and average voting IJSER
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probability and the expected values, the mean squared error is 
modest. This is the error in probability predictions in general, 
and both methods have extremely low errors. As a result, the 
brier score reflects the accuracy of both systems' probability es-
timates. The reliability curve is the last visualisation we'll look 
at. The reliability curve for both methods is shown in figure 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Both methods are near to properly calibrated predictions, ac-
cording to the calibration plot or reliability curve shown above. 
In both directions, there are occasional overestimations and un-
derestimations. When compared to the calibration plot for rela-
tive class frequency, the average voting calibration plot is bet-
ter. This behaviour is intriguing because relative class fre-
quency underestimation is higher than average voting. Because 
the probabilities pertaining to that particular bin range may 
have an average that is closer to the fraction of positives, aver-
age voting may have smaller underestimations than relative 
class frequency.  

 
Because the calibration plots show the mean predicted proba-
bility of a bin range in relation to its fraction of positives (the 
proportion of samples in a bin range that belong to that positive 
class), it can be concluded that average voting has a mean pre-
dicted probability that is closer to the fraction of positives for 
the bin range 0.3 - 0.5 when the total number of bins is 10. This 
refers to the predicted probability provided by average voting 
in general vs relative class frequency for bins ranging from 
around 0.3 to 0.5. From the 0.3 to 0.5 bin range, average voting 
has superior probability estimates, however higher bin ranges 
have estimates close to that of relative class frequency. The 
model would be completely calibrated if the fraction of posi-
tives and the mean predicted probability were equal. A general 
grasp of both approaches' probability estimations can be gained 
by analysing the calibration plot. In reality, as compared to rel-
ative class frequency, average voting performs slightly better, 
according to the plot.  
 
Despite the fact that this is a visual analysis, a statistical test will 
help us determine which method is superior. Calibration errors 
are used to compare the two methods in a statistical test. The 
statistical test is done for the following errors: 

    
1. Estimated calibration error (ECE) - The expected calibra-

tion error measures the expected difference between ac-
curacy and confidence by grouping all samples [15]. 

2. Maximum calibration error (MCE) - The maximum cali-
bration error is the maximum difference between accu-
racy and confidence overall bins by grouping all sam-
ples into K bins [16]. 

3. The average calibration error (ACE) - The average cali-
bration error measures the average difference between 
accuracy and confidence [17]. 

 
 

The table with the errors, and the statistical test results is 
shown in Table 7.  
 

Note, the statistical test was completed using the 5x2cv 
paired t test. “The 5x2cv paired t test is a procedure for comparing 
the performance of two models” [18]. This is how the statistical test 
works: 

 
Let the two methods be A and B. In this statistical test, the 

dataset is split into training and testing data, each having 50% 
of the data from the original dataset. This splitting is done 5 
times, hence there are 5 iterations. In each of the iterations, the 
A and B are fit to the training data and the error is calculated 
based on the testing data predicted by the trained model. After 
the error is calculated, the training and testing data are reversed 
(previous training data becomes new testing data and vice 
versa). Therefore, there are two errors: 

 

   ⅇ(1) = ⅇ𝑎
(1)

− ⅇ𝑏
(1)

                              (4) 

   ⅇ(2) = ⅇ𝑎
(2)

− ⅇ𝑏
(2)

                              (5) 

 
After the error estimates are calculated, the estimated mean 

and variance is calculated. The estimated mean is  
 

   ⅇ̅ =
ⅇ(1)+ⅇ(2)

2
               (6) 

and the estimated variance is  
 

  𝑠2 = (ⅇ(1) − ⅇ̅)
2

+ (ⅇ(2) − ⅇ̅)
2
              (7) 

 
This variance is calculated for 5 iterations and then the t statistic 
is computed: 

 

TABLE 7 
STATISTICAL TEST RESULTS FOR RELATIVE CLASS FREQUENCY 

AND AVERAGE VOTING 

 

 

Fig. 7. Calibration plot of average voting and relative class fre-
quency 
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𝑡 =
ⅇ1

(1)

√(
1
5

) ∗ 𝛴ⅈ=1
5 𝑠ⅈ

2

 

           
         (8) 

 
Here ⅇ1

(1)
 is ⅇ(1)from the first iteration. The degrees of free-

dom is 5 and considering this value with the t-statistic, the p-
value can be calculated. Once the p-value is calculated, it can be 
compared to the significance level which is 0.05. If the p-value 
is greater than 0.05, the null hypothesis cannot be rejected, else 
it can be rejected. Therefore,  𝐻0 = A and B are not statistically 
different.  𝐻𝑞 =  A and B are statistically different. 

 
The two probability estimating methods are not statistically 

different when considering the three error estimates, according 
to the findings of the statistical test shown in table 7. Let's look 
at the system's binary cross-entropy for more information. It 
will be possible to see how the goal probability distribution and 
the estimation probability distribution differ by examining the 
cross entropy (indirectly giving an idea about the estimations). 
The greater the difference in the distribution, the higher the 
cross entropy. The cross entropy of the model that predicts ran-
dom probability will be considered when comparing cross en-
tropy. In the case of binary classification, this random probabil-
ity distribution will show how effectively the estimated proba-
bilities of the stated methods defer to this random probability 
distribution. Our dataset is balanced, and hence the probability 
mass function of the labels of our dataset is  

   𝑎ⅈ =
1

2
                                                 (9) 

 Logically, any random prediction won't have any discrimi-
native power on average. Therefore, on average the predicted 
probability assigned to any observation would be  

   𝑏ⅈ =
1

2
                                                  (10) 

Where 𝑛 is the number of classes. Therefore, the average 
cross entropy for a random prediction would become: 

 

𝐻[𝑎, 𝑏] = − ∑ 𝑎ⅈ 𝑙𝑜𝑔(𝑏ⅈ)ⅈ=1 = −2 ⋅
1

2
⋅ 𝑙𝑜𝑔 (

1

2
) = 𝑙𝑜𝑔(2) = 0.69

         (11) 

A random probability distribution's average cross-entropy is 
0.69. The average voting average cross-entropy is 0.295. When 
the average cross entropy of average voting is compared to the 
average cross entropy of the random distribution, it is evident 
that average voting's estimated probability are superior. The 
important thing to note here is that, while average cross entropy 
for average voting is better than random probabilities, the dis-
crepancy between the target and estimated probabilities distri-
butions is significant. This illustrates that some of the average 
voting probabilities deviate from the desired distribution, caus-
ing the average cross entropy to rise. Note, since it is a binary 
classification problem, our target distribution is a Bernoulli ran-
dom variable where 𝑋 ~ Bernoulli(p). A plot of cross entropy 
and the probability distribution for a specific event can be used 

to visualise the divergence from the target distribution. The tar-
get distribution is [0.0, 1.0], whereas the estimated probability 
distribution is the probability calculated using any of the meth-
ods for a random event X. The cross entropy between this target 
distribution and the estimated probability distribution will be 
determined. For all estimated probabilities obtained by average 
voting, this will be plotted. Only the target variable 'phishing' 
is shown for illustration purposes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8 consists of two plots. The first plot shows the 

heatmap of its respective scatter plot which is shown in the 2nd 
plot. The scatter plot depicts the mentioned relationship be-
tween the probability distribution and its cross entropy. The re-
lationship is negative.  The cross entropy decreases as the prob-
ability distribution approaches the target distribution. It also 
achieves a cross entropy of 0 when the target distribution and 
the calculated probability distribution are identical. This asser-
tion is logical since the cross entropy reduces or becomes zero 
as the predicted probability for the phishing class approaches 
or equals 1.0. The scatter plot depicts the relationship between 
calculated probabilities and average voting's cross entropy. It 
also demonstrates that some probabilities are diametrically op-
posed to the intended distribution. The cross entropy in this 
scenario is greater than 15. The heatmap represents the scatter 
plot but shows how many points lie in which range. The more 
the area is red, the more data points lie in that area and vice 
versa. The heatmap shows that most of the data points lie in the 
0.9 to 1.0 region which corresponds to the target distribution, 
[0.0, 1.0]. Note, 0.9 - 1.0 region represents the 1.0 of the target 
distribution, and if we subtract it from 1.0, the 0.0 aspect of the 
target distribution can be retrieved. Logically, the graph, if plot-
ted for non-phishing, should be a reflection of the x-axis of 
phishing. The heatmap also shows that many data points lie in 
the 0.0 - 0.1 range, which is just opposite of the target distribu-
tion, leading to an extremely high cross entropy. This is why 
the average cross entropy of average voting is high, since many 
probabilities are just opposite to the target distribution. 
Now let us compare relative class frequency's average cross en-
tropy to random probability and average voting. The average 
relative class frequency cross entropy is 0.221. The method has 
very good probabilities when compared to random probabili-
ties. The probabilities provided by relative class frequency are 
superior to those provided by average voting. A cross entropy 

 

Fig. 8. Probability distribution vs cross entropy (average voting) 
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vs probability distribution map can be used to see why relative 
class frequency has a lower average cross entropy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
According to the scatter plot in figure 9, the probability dis-

tribution and cross entropy have a negative relationship once 
again. The trend is pretty similar to average voting, but the 
most notable difference is that the heatmap shows very few 
data points in the 0.0 - 0.1 range. Because there are few points 
that stray from the desired distribution, the average cross en-
tropy for relative class frequency decreases. 

 
Overall, based on cross entropy and the previous study, it is 

obvious that relative class frequency has better probabilities. 
Moving forward, the average cross entropy of relative class fre-
quency is still high. This indicates that the probabilities are not 
adequately calibrated, and that more work needs to be done to 
produce accurate probability estimates. Probability calibration 
on the random forest classifier can be done in this scenario. As 
a result, probability calibration is used to make even more im-
provements. Two methods are used to calibrate the probabili-
ties: Sigmoid and Isotonic Regression. In the case of probability 
calibration, both methods are dominant [19]. Because relative 
class frequency provided superior estimates, it was used for 
further calibration, and average voting was not taken into ac-
count. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
According to the calibration plot in the figure 10, probabilities 

after calibration with an isotonic regressor are clearly superior 
to relative class frequency. In comparison to relative class fre-
quency, there are extremely few under and over estimations for 
isotonic, implying solid probability estimates.  
 
Calibration plots, as previously mentioned, display the mean 
predicted probability vs. the fractions of positives, demonstrat-
ing that the isotonic probabilities are close to the real predicting 
class. Due to the large amount of samples, Sigmoid could not 
perform better (in fact, it performs far worse than relative class 
frequency). “Isotonic’ will perform as well as or better than ‘sig-
moid’ when there is enough data (greater than ~ 1000 samples) 
to avoid overfitting” [19]. The logistic model (sigmoid regressor 
applies a logistic model) also assumes the output of the classi-
fier to be normally distributed with the same variance. The 
probabilities are bimodally distributed when the relative class 
frequency is used to determine the probability (shown in figure 
11). 

 
 
 
 
 
 
 
 
 
 
 
 

 
The isotonic regressor's average cross entropy of calibrated 

probabilities is 0.218. The average cross entropy informs about 
very good probability when compared to random probabilities. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The probability distribution and the cross entropy have a nega-
tive relationship again, as seen in figure no 12. The pattern re-
sembles that of average voting and relative class frequency. The 
heatmap displays a small number of data points around 0.0 - 
0.1, indicating that the divergence from the target distribution 
is low, resulting in a low average cross entropy. In compared to 
relative class frequency, the most significant difference to note 
is that when considering the opposite of the target distribution 

 

Fig. 9. Probability distribution vs cross entropy (RFC) 

 

Fig. 10. Calibration plots for RFC, Average Voting, Sigmoid, Iso-
tonic 

 

Fig. 11. Relative class frequency's probability distribution 

 

Fig. 12. Probability distribution vs cross entropy (Isotonic) 
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being estimated, the largest cross entropy achieved is roughly 7 
nats.  
 
The largest cross entropy was 16 nats when the identical case 
was considered for relative class frequency. This means that the 
probability calculated by isotonic are more accurate. Another 
thing to note in the plot is that the cross entropy is missing for 
some probability distributions, and the negative trend is not as 
smooth as relative class frequency. This is because there are no 
probability estimates for those distributions. 

 
The average cross entropy for calibrated probabilities is only 

0.03 nats, which is quite low when compared to relative class 
frequency. This demonstrates that relative class frequency has 
a high ability to predict probabilities. If this is the case, the cali-
bration had little impact on the predicted probabilities, despite 
the calibration plot indicating otherwise. This is an intriguing 
behaviour that will be further investigated and evaluated. The 
behaviour of the error function: mean squared error and ex-
pected calibration error (root mean square error) can be ana-
lysed by looking at the calibration plot in more detail in order 
to understand how the error behaves internally and then the 
difference between relative class frequency and calibrated 
probabilities given by isotonic regressor. The calibration plot 
can be viewed as a regression problem wherein the perfectly 
calibrated line is a linear line where 𝑦 = 𝑥. Therefore, logically, 
when the mean predicted probability is equal to the fractions of 
positive, the model will be perfectly calibrated leading to 𝑦 =  𝑥 
for every point in the plot. In response to the linear line, it can 
also be perceived as a linear regression problem but with a 
twist. The twist is, rather than predicting data points, the 𝑥 is 
considered as the truth value and y is considered as the pre-
dicted value. By subtracting 𝑥 − 𝑦, the residual can be retrieved, 
following the mean squared error can be retrieved, which can 
be analysed. The number of bins in a calibration plot is an im-
portant consideration. The 𝑥 and 𝑦 variables, which are the 
mean predicted probability and fraction of positives, are af-
fected by the number of bins. Let's have a look at an example. If 
the bins are 10, the probabilities are 0.0 to 0.1, 0.1 - 0.2, 0.2 - 0.3, 
0.9 - 1.0, and so on. Let's say the number of samples in the first 
bin range is 2000. These samples are based on probability esti-
mates. When the number of bins is increased to around 100, 
each bin becomes 0.01 - 0.02, 0.02 - 0.03, and so on. As a result, 
depending on the real value of the probability, the number of 
samples will likewise drop. Now, if we increase the number of 
bins by a substantial amount, say 20000, the mean predicted 
probability and the actual bin value will be quite near in case 
the probability falls inside that bin range. Given only one prob-
ability occurring within such a limited range, the fractions of 
positive may be 0 or 1. As a result, if the fractions of positive are 
0, both the mean predicted probability and the fractions of pos-
itive will be very close to each other, resulting in a very low re-
sidual and a very close match to the properly calibrated straight 
line. As a result, this behaviour will be investigated further to 
see how this miscalibration error behaves when the number of 
bins meets the total number of samples, as well as when the 
number of bins exceeds the total number of samples for which 
the model was evaluated. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 13 depicts the error function vs the number of bins for 

relative class frequency. The first plot depicts how the mean 
squared error function error changes as the number of bins in-
creases from ten to thirty thousand. Initially, as the number of 
bins grows, so does the mean squared error, until the number 
of bins hits around 10000. When the number of bins exceeds 
10,000, the error stabilises and remains within 0.09 - 0.10 until 
30000 bins. Note, this error solely applies to the testing dataset. 
Based on the plot, the greatest deviation is around 0.10. This 
pattern makes sense from a logical standpoint. To better com-
prehend and assess it, let us split it down into sections. Because 
the residual (x - y) is minimal, the mean squared error is small 
as well. Furthermore, as previously stated, when the number of 
bins increases, the actual bin range shrinks, and the number of 
samples lowers, resulting in a low mean predicted probability 
that is closer to the actual bin range. This is shown in the figure 
no 14.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The mean predicted probability goes from 0.025 to nearly 0.0 as 
the number of bins increases. If this is the case, the mean 
squared error should decrease because the residual for high bin 
values is smaller. The fact that the fractions of positive change 
become opposites of the mean predicted probability reveals 
that this is not the case. This is depicted in the scatterplot and 
heatmap in figure 15. 

 
The calibration curve data points for two absolute numbers of 
bins, 1000 and 10000, are depicted in the figure 15. A weak lin-
ear relationship can be seen in the scatterplot of 1000 bins. It is 
weak because the data points are dispersed and not particularly 

 

Fig. 13. Error function vs the number of bins for RCF 

 

Fig. 14. Mean predicted probability for the first bin range 
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close to one another, resulting in outliers and, as a result, a rise 
in the mean squared error when x = y is used as the line of best 
fit.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The most essential thing to take away from the plot is where the 
most data points are spread out. The majority of the data points 
on the heatmap are between 0.0 and 0.1 and 0.9 and 1.0. Because 
of the positive fractions, this is the case. As previously stated, 
as the number of bins increases, the mean predicted probability 
approaches the actual bin value, resulting in a small number of 
data points falling inside that bin range, maybe only a single 
sample causing only one or no positive classes. If there is only 
one positive class sample, the fraction becomes the number it-
self, resulting in a data point with a y variable value of 1 or 0.  
 
This is still in favour of the line of best fit for the particular bins 
1000, because the fractions of positive are related to the mean 
predicted probability, i.e., when the mean predicted probability 
is 0.0 or close to that number, the fraction of positive corre-
sponds to the mean predicted probability. They are not oppo-
site to each other. In the plot with the bins set to 10000, this op-
posing behaviour is plainly visible. There is no relationship be-
tween the variables because the bins are so large. In reality, the 
trend resembles a mirrored version of the letter 'Z.' The plot 
shows the reverse behaviour because the fractions of positive 
are 0 for the mean predicted probability of around 0.8, leading 
the mean squared error to rise. This can also happen in a differ-
ent way. The mean predicted probability is near to 0.0, while 
the fractions of positive are 1, resulting in a large mean squared 
error. The heatmap also reveals that the majority of the points 
are in the 0.0 - 0.1 and 0.9 - 1.0 ranges, but the map is skewed 
near the opposite end of the bin ranges, indicating that some 
points are pointing in the opposite direction, as previously dis-
cussed. This explains why the mean squared error increases as 

the number of bins increases, which is an intriguing behaviour. 
Returning to figure 13, the mean squared error function and its 
trend have been investigated. The expected calibration error 
follows the same pattern as the mean squared error. Because of 
the behaviour explained before, the error grows as the number 
of bins increases. The expected calibration error does not settle 
even when the bins approach a large amount, which is the gap 
between the trend of mean squared error and the expected cal-
ibration error. This is yet another intriguing characteristic of ex-
pected calibration error that we can investigate by raising the 
number of bins to a large amount.  
 

In order to understand what happens to the expected cali-
bration error, the number of bins is increased to 100,000. The 
plot shows the error vs the number of bins is shown in the fig-
ure no 16.  
 

 
 
 
 
 
 

 
 
 
 
Once the number of bins reaches 100,000, the MSE error func-
tion begins to reduce. This is a novel behaviour since, previ-
ously, the error rose as the number of bins increased, but if the 
error exceeds 30,000, the opposite occurs. This could be at-
tributed to the fact that there were 28,771 total samples in the 
testing dataset. As a result, the probabilities within a certain bin 
range may be empty, lowering the total MSE. In the case of the 
ECE error function, the error is still rising rather than stabilis-
ing. Although the rate of change is low, it's possible that extend-
ing the bins more would stabilize the error. To check this, the 
number of bins has been increased to 500,000. Logically, the 
MSE should still decrease and for ECE it should stabilize based 
on the rate of change at approximately 90,000 bins. 

 
 
 
 
 

 
 
 

 
 

 
 

The error vs 500,000 bins is shown in figure no 17. Logically, 
the MSE should be dropping, and it is, but at a relatively slow 
rate when compared to 100,000 bins. After 400,000 bins, the er-
ror for ECE starts to settle. As a result, both errors stabilize at 
different bins, ECE does not diminish, MSE does decline, but at 
a slower rate after a certain point. The error function has a trend 

 

Fig. 15. Heatmap and scatter plot of the calibration plot of RCF 
probs 

 

Fig. 16. Error function vs the number of bins (100,000) for RCF 

 

Fig. 17. Error function vs the number of bins (500,000) for RCF 
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for relative class frequency in general, but this pattern changes 
as the number of bins increases sufficiently. The data points 
show a trend and are not widely scattered; thus, the probabili-
ties are not really random. If the probabilities were random, the 
error function's data points would be scattered. Overall, in-
creasing the number of bins to investigate both errors reveal 
how the error behaves when the mean predicted probability is 
nearly equal to the actual bin value. It also demonstrates how 
the positive fractions differ from the mean expected probability. 
Let's look at the same error function for calibrated probability 
and see how it compares to relative class frequency. 

 
 
 
 
 
 
 
 
 
 
 
 

      Figure 18 depicts the error function vs number of bins for 
the calibrated probabilities. The first graph depicts how the 
mean squared error function error changes as the number of 
bins increases from ten to thirty thousand. When the number of 
bins is increased, the mean squared error increases as well. 
When the number of bins reaches around 8000, the error stabi-
lises and stays within 0.025 - 0.030 until the total number of bins 
reaches 30000. Based on the plot, the greatest error is around 
0.030. The MSE is minimal because the residual for each point 
is small, as previously stated. In terms of the trend, as previ-
ously noted, as the number of bins increases, the actual bin 
range shrinks, and the number of samples shrinks as well, re-
sulting in a low mean predicted probability that is closer to the 
actual bin range. It was previously addressed why the mean 
squared error is high despite the fact that the increment in bins 
should logically do the reverse. The trend of isotonic calibrated 
probabilities for MSE differs dramatically from the relative 
class frequency trend. The trend is different because, for in-
stance, the data points are dispersed and lack the smooth flow 
of relative class frequency. This is a crucial point to keep in 
mind while comparing the two. Because the data points for iso-
tonic are a little more dispersed, the probabilities are a little 
more random than those for relative class frequency. By ran-
dom, it is meant that the probabilities don't have a continuation 
and would differ unexpectedly. The figure 19 helps to visualise 
this. 
 
The calibration curve for bins 10 raised to increasing power 
from 1 to 4 is shown in figure 19. The probabilities provided by 
isotonic are precisely calibrated, shown in the first plot, 
whereas relative class frequency contains some over and under 
estimations. The most essential conclusion to draw from the 
plot is that the fluctuation of the data points for relative class 
frequency persists. As the number of bins grows, so does the 

variation, until the mean predicted probability and the propor-
tions of positives are equal.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For isotonic-based calibrated probabilities, the situation is dif-
ferent. There is no notable fluctuation in the calibrated proba-
bilities; in fact, at some places, the fractions of positive are 0 and 
1. This indicates that there is no apparent fluctuation trend. Fur-
thermore, because there is no variation and certain places have 
a high residual even though the number of bins is clearly mini-
mal, this suggests that very few probabilities are in particular 
bin ranges analytically. As a result, the data points in the MSE 
error function plot for isotonic based probabilities are a little 
scattered. The expected calibration error function stabilises af-
ter around 5000 bins, which is an intriguing fact to investigate 
in the case of calibrated probabilities. Figure 20 illustrates this 
point well. Because the calibrated probabilities do not have a 
large fluctuation, the ECE does not continue to rise as the num-
ber of bins grows, which is why the ECE stabilises. Because of 
the nature of the estimated probability, there is no fluctuation 
in the probabilities. Many bins are left empty when isotonic 
probabilities are disseminated further by significant bins be-
cause that particular bin range has no estimated probabilities. 
Additionally, some bins may include a few samples. If there are 
few samples, the probabilities may be incorrectly assessed, re-
sulting in an opposing fraction of positive, resulting in more 
fluctuation. This is the case for relative class frequency, which 
is why when the bins are increased, there is a huge fluctuation. 
This is not the case with isotonic. Histograms for different 

 

Fig. 18. Error function vs the number of bins for Isotonic 

 

Fig. 19. Calibration plots with different bins for RCF and isotonic IJSER
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amounts of bins can be used to visualise this rationale. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

As the number of bins increases to 100,000, the sample size for 
relative class frequency decreases. Finally, bins with a small 
number of samples have a high fluctuation, whereas bins with 
a large number of samples have a lesser fluctuation. There are 
a few samples in certain bins, which could produce a sudden 
swing. This is why, when compared to relative class frequency, 
the ECE and MSE for isotonic stabilise at a lower bin value. The 
entire analysis of cross entropy and calibration plots have given 
us the following results: 
    

1. Probabilities are kind of random (the probabilities don't 
have a continuation and would differ unexpectedly) for 
isotonic, whereas for relative class frequency, there is a 
proper trend. 

2. There is a very low fluctuation for isotonic when the 
number of bins increases, whereas relative class fre-
quency has a high fluctuation. 

3. Comparing the cross-entropy plot (figure no 12) and his-
tograms (figure no 20) for isotonic, it is clear that some 
probability ranges are not estimated by isotonic. 

 
The behaviour of MSE and ECE when increasing the number 

of bins to a considerable amount was known through the anal-
ysis of the calibration curve. It's also clear what the main differ-
ence is between relative class frequency probabilities and iso-
tonic probabilities. The differences between the estimates of 
probabilities of both methods could also be understood via 

cross entropy analysis. Based on the results of the analysis, it 
can be concluded that the probabilities provided by isotonic are 
superior to those provided by relative class frequency. This is 
because isotonic has lower fluctuations as the number of bins 
increases, implying that the probabilities provided by isotonic 
are clustered towards certain bin ranges. Only a few probability 
estimates differ from the desired distribution. The cross entropy 
as well as the fluctuation analysis demonstrates this. The only 
issue that can be derived from isotonic probabilities is that they 
do not have a continuation and can differ unexpectedly. This is 
depicted in figure 19, which shows the MSE with some scat-
tered data points. This indicates that the data point was spread 
due to an abrupt fluctuation in the calibration plot (fluctuation 
being an outlier causes the data point to be more scattered).  

 
A statistical test can also be used to support the completed 

analysis by comparing calibrated probability and relative class 
frequency. The results of the statistical tests are reported in the 

table 8. 
Because the p-value is less than 0.05, the null hypothesis may 
be rejected and the alternate hypothesis, which claims that both 
procedures are statistically distinct, can be accepted. This con-
firms the findings of the earlier investigation. 

 
Therefore, considering the method, isotonic probabilities can 

be used to estimate probabilities for phishing detection. The 
probability estimates can also be made better by training the 
model on the following criterias: 

 
1. Cross validated average cross entropy - Train the model 

with parameters that could best fit the situation of pre-
dicting as close as possible to the target distribution. 

2. Cross validated MSE - Train the model with parameters 
that could best fit the situation of predicting as close to 
the perfectly calibrated line (MSE being as close to 0). 

3. Cross validated ECE - Train the model with parameters 
that could best fit the situation of predicting as close to 
0 for ECE. 

 
The random forest was retrained using cross validated aver-

age cross entropy to find the best model. Although any of the 
three techniques can be used to retrain the model and find the 
optimal parameters, the average cross entropy was chosen since 
it calculates cross entropy for each prediction in relation to its 
target distribution. 

 
Because the computational time required by traditional 

GridSearchCV is so high, the random forest was retrained using 
Bayesian Optimization. In the table 9, the parameters returned 

TABLE 8 
STATISTICAL TEST RESULTS FOR ISOTONIC AND RCF 

 

 

Fig. 20. Histograms with different bins for RCF and isotonic IJSER
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by Bayesian Optimization are listed. 
 

The parameter values are quite identical to those of the pre-
viously trained model, with the exception that the final model 
is trained via cross validated average cross entropy. The model 
has a cross validated average cross entropy of 0.2125. It is lower 
than the previously trained calibrated model, as cross valida-
tion has been used. For isotonic based calibrated probabilities, 
the cross validated average cross entropy is 0.212. 

7 THRESHOLD DETERMINATION 

For estimating probabilities using average voting, we need 
to determine an optimum threshold based on which the classi-
fier can classify the estimated probability to a particular class. 
Normally, the threshold of 0.5 can be used, but this threshold is 
not always optimum. We will be utilizing two different metrics 
that will lead us to the final threshold: the ROC plot and the 
precision-recall curve. The ROC Curve is a useful diagnostic 
tool for understanding the trade-off for different thresholds and 
the ROC AUC provides a useful number for comparing models 
based on their general capabilities. If crisp class labels are re-
quired from a model under such an analysis, then an optimal 
threshold is required.  [20]. Note, we need to find the threshold 
wherein there is a balance between false positive and true pos-
itive rates. The ROC curve is shown in Figure 21. The curve has 
the point wherein the false positive and true positive rates are 
balanced. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since, the black dot is the closest point to the top-left corner, 

this would definitely maintain a balance between false positive 
and true positive rate.  

 
This threshold point is calculated using Youden’s J statistic. 
Youden’s J statistic = True positive rate - False positive rate. 
This statistic is calculated, and then the maximum value is cho-
sen. The threshold respective to the maximum Younden’s J sta-
tistic is then used for classification. The maximum Younden’s J 
statistic is 0.826. The threshold respective to the maximum 
Younden’s J statistic is 0.506451. Similarly, we will analyze the 
precision-recall curve and then select the threshold. The preci-
sion-recall curve with the threshold is shown in Figure 22.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

In a precision-recall curve, a no-skill model is represented by 
a horizontal line with a precision that is the ratio of positive ex-
amples in the dataset, or 0.01 on our synthetic dataset. A perfect 
skill classifier has full precision and recall with a dot in the top-
right corner. Again, as we are interested in the balance between 
precision and recall, this is the same as optimizing the F-meas-
ure that summarizes the harmonic mean of both measures [20]. 

 
Similar to ROC, we will find the best F-score and the thresh-

old concerning the best F-score. Since the black dot in the preci-
sion-recall curve is close to the top right corner, it represents the 
best threshold. The F-score is 0.912, and the respective thresh-
old is 0.466890. Through both metrics, we see we have got dif-
ferent thresholds. Now which to choose? It is important to real-
ize that precision-recall focuses on the performance of a classi-
fier on the positive (minority class) only [20]. If this is the case, 
we need to choose the threshold respective to the ROC curve, 
as the negative class is also very important to us. Therefore, the 
final threshold we will choose is 0.506451. 

8 CONCLUSION 

Based on various features, we developed a model that estimates 
the probability of a URL attempting to phish. Based on the pre-
dicted probability, the same algorithm may also be used to clas-
sify the URL as phishing or non-phishing. We successfully eval-
uated and discovered a method for estimating probabilities that 
corresponded to our original methodology. The research was 
conducted in accordance with the root protocol. We were also 
able to successfully identify and examine the model's perfor-
mance in both classification and probability predictions.   

TABLE 9 
FINAL MODEL WITH TUNED PARAMETERS VIA BAYESIAN OPTIMIZA-

TION 

 

 

Fig. 21. ROC curve for threshold determination 

 

Fig. 22. Precision-recall curve for threshold determination 
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